TLDRai.com Too Long; Didn't Read AI TLDWai.com Too Long; Didn't Watch AI
Fanya muhtasari usio na kikomo na AI!
Pata toleo jipya la PRO US$ 7.0/m
Hakuna vitendaji vilivyowekewa vikwazo

Introduction to Machine Learning: Module 6.9 GMM-EM hyper-parameter tuning

The speaker is discussing the use of Bayesian Information Criterion (BIC) in Gaussian Mixture Model Expectation-Maximization (GMM-EM) clustering. The BIC measures how well a model fits the data, and it helps determine the number of clusters in a dataset. GMM-EM can capture differences in probability among clusters, which can impact the choice of the number of clusters. In contrast, K-means assumes equally likely clusters, while GMM-EM can encode probabilities of belonging to different clusters. The lecture highlights similarities and differences between these two clustering algorithms.
Watumiaji wa PRO hupata muhtasari wa Ubora wa Juu
Pata toleo jipya la PRO US$ 7.0/m
Hakuna vitendaji vilivyowekewa vikwazo
Fanya muhtasari wa video ya karibu nawe Fanya muhtasari wa video mtandaoni

Pata matokeo ya ubora bora na vipengele zaidi

Kuwa PRO


Muhtasari unaohusiana