TLDRai.com Too Long; Didn't Read AI TLDWai.com Too Long; Didn't Watch AI
Faceți rezumate nelimitate cu AI!
Upgrade la Pro US$ 7.0/m
Fără funcții restricționate

Introduction to Machine Learning: Module 6.9 GMM-EM hyper-parameter tuning

The speaker is discussing the use of Bayesian Information Criterion (BIC) in Gaussian Mixture Model Expectation-Maximization (GMM-EM) clustering. The BIC measures how well a model fits the data, and it helps determine the number of clusters in a dataset. GMM-EM can capture differences in probability among clusters, which can impact the choice of the number of clusters. In contrast, K-means assumes equally likely clusters, while GMM-EM can encode probabilities of belonging to different clusters. The lecture highlights similarities and differences between these two clustering algorithms.
Utilizatorii PRO primesc rezumate de calitate superioară
Upgrade la Pro US$ 7.0/m
Fără funcții restricționate
Rezumați videoclipul local Rezumați videoclipul online

Obțineți rezultate de calitate mai bună cu mai multe funcții

Deveniți PRO


Rezumate aferente