TLDRai.com Too Long; Didn't Read AI TLDWai.com Too Long; Didn't Watch AI
د AI سره لامحدود لنډیزونه جوړ کړئ!
PRO ته لوړ کړئ US$ 7.0/m
هیڅ محدود فعالیت نشته

Introduction to Machine Learning: Module 6.9 GMM-EM hyper-parameter tuning

The speaker is discussing the use of Bayesian Information Criterion (BIC) in Gaussian Mixture Model Expectation-Maximization (GMM-EM) clustering. The BIC measures how well a model fits the data, and it helps determine the number of clusters in a dataset. GMM-EM can capture differences in probability among clusters, which can impact the choice of the number of clusters. In contrast, K-means assumes equally likely clusters, while GMM-EM can encode probabilities of belonging to different clusters. The lecture highlights similarities and differences between these two clustering algorithms.
د پرو کاروونکي د لوړ کیفیت لنډیز ترلاسه کوي
PRO ته لوړ کړئ US$ 7.0/m
هیڅ محدود فعالیت نشته
د محلي ویډیو لنډیز د آنلاین ویډیو لنډیز

د نورو ځانګړتیاو سره د ښه کیفیت محصولات ترلاسه کړئ

PRO اوسئ


اړونده لنډیز