TLDRai.com Too Long; Didn't Read AI TLDWai.com Too Long; Didn't Watch AI
AI ਨਾਲ ਅਸੀਮਿਤ ਸੰਖੇਪ ਬਣਾਓ!
PRO ਵਿੱਚ ਅੱਪਗ੍ਰੇਡ ਕਰੋ US$ 7.0/m
ਕੋਈ ਪ੍ਰਤਿਬੰਧਿਤ ਫੰਕਸ਼ਨ ਨਹੀਂ

Introduction to Machine Learning: Module 6.9 GMM-EM hyper-parameter tuning

The speaker is discussing the use of Bayesian Information Criterion (BIC) in Gaussian Mixture Model Expectation-Maximization (GMM-EM) clustering. The BIC measures how well a model fits the data, and it helps determine the number of clusters in a dataset. GMM-EM can capture differences in probability among clusters, which can impact the choice of the number of clusters. In contrast, K-means assumes equally likely clusters, while GMM-EM can encode probabilities of belonging to different clusters. The lecture highlights similarities and differences between these two clustering algorithms.
PRO ਉਪਭੋਗਤਾਵਾਂ ਨੂੰ ਉੱਚ ਗੁਣਵੱਤਾ ਦੇ ਸਾਰਾਂਸ਼ ਮਿਲਦੇ ਹਨ
PRO ਵਿੱਚ ਅੱਪਗ੍ਰੇਡ ਕਰੋ US$ 7.0/m
ਕੋਈ ਪ੍ਰਤਿਬੰਧਿਤ ਫੰਕਸ਼ਨ ਨਹੀਂ
ਸਥਾਨਕ ਵੀਡੀਓ ਦਾ ਸਾਰ ਦਿਓ ਔਨਲਾਈਨ ਵੀਡੀਓ ਨੂੰ ਸੰਖੇਪ ਕਰੋ

ਹੋਰ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੇ ਨਾਲ ਬਿਹਤਰ ਗੁਣਵੱਤਾ ਦੇ ਆਉਟਪੁੱਟ ਪ੍ਰਾਪਤ ਕਰੋ

PRO ਬਣੋ


ਸੰਬੰਧਿਤ ਸੰਖੇਪ

ਹੋਰ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੇ ਨਾਲ ਬਿਹਤਰ ਗੁਣਵੱਤਾ ਦੇ ਆਉਟਪੁੱਟ ਪ੍ਰਾਪਤ ਕਰੋ

PRO ਬਣੋ