TLDRai.com Too Long; Didn't Read AI TLDWai.com Too Long; Didn't Watch AI
Lav ubegrænsede opsummeringer med AI!
Opgrader til Pro US$ 7.0/m
Ingen begrænsede funktioner

Introduction to Machine Learning: Module 6.9 GMM-EM hyper-parameter tuning

The speaker is discussing the use of Bayesian Information Criterion (BIC) in Gaussian Mixture Model Expectation-Maximization (GMM-EM) clustering. The BIC measures how well a model fits the data, and it helps determine the number of clusters in a dataset. GMM-EM can capture differences in probability among clusters, which can impact the choice of the number of clusters. In contrast, K-means assumes equally likely clusters, while GMM-EM can encode probabilities of belonging to different clusters. The lecture highlights similarities and differences between these two clustering algorithms.
PRO-brugere får oversigter i højere kvalitet
Opgrader til Pro US$ 7.0/m
Ingen begrænsede funktioner
Opsummer lokal video Opsummer online video

Få bedre kvalitet output med flere funktioner

Bliv PRO


Relaterede resuméer